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The auxiliary-differential-equation formulation of the finite-difference time-
domain method has become a powerful tool for modeling electromagnetic wave
propagation in linear and nonlinear dispersive media. In the first part of this pa-
per, we compare the stability and accuracy of second- and fourth-order-accurate
spatial central discretizations on staggered grids with a third-order-accurate spatial
discretization on an unstaggered grid, combined with a second-order leapfrog time
integration scheme for modeling linear dispersive phenomena in a one-dimensional
single-resonance Lorentz medium. We use on the unstaggered grid the NS2 scheme
introduced by Y. Liu, which combines forward and backward differencing for the
spatial derivatives. Phase and attenuation errors are determined analytically across
the entire frequency band of the low-loss single-resonance Lorentz model. In the
second part of the paper, we compare the use of one-dimensional staggered and un-
staggered grids for modeling the transient evolution of few-cycle optical localized
pulses in a dispersive Lorentz medium with a delayed third-order nonlinearity. The
focus of the study is on the decay of higher-order solitons under the combined action
of dispersion, self-phase modulation, self-steepening, and stimulated Raman scatter-
ing. Numerical results from the simulations on the unstaggered and staggered grids
are in excellent agreement. This study demonstrates the accuracy of the unstaggered
scheme augmented with a linear/nonlinear dispersive media formulation for temporal
soliton propagation. c© 2000 Academic Press
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1. INTRODUCTION

Finite-difference time-domain (FDTD) modeling of electromagnetic pulse propagation in
nonlinear optical materials has recently gained much attention [1]. The auxiliary-
differential-equation (ADE) formulation, initially developed for linear dispersive mate-
rials [2], is currently the most commonly used approach for incorporating the nonlinear
relationship between the polarization vector and the electric field into the FDTD Maxwell’s
equation solver [3, 4]. This modeling capability has been applied to a variety of second-
and third-order nonlinear phenomena, including temporal and spatial soliton propagation
[3, 5, 6], self-focusing of optical beams [4], scattering from linear–nonlinear interfaces [7],
pulse propagation through nonlinear corrugated waveguides [8], pulse-selective behavior
in nonlinear Fabry–Perot cavities [9], and second-harmonic generation in nonlinear wave-
guides [10].

Stability, numerical dispersion, and artificial dissipation are factors in FDTD-ADE mod-
eling that must be accounted for to understand the algorithm’s operation and its accuracy
limits. Petropoulos [11], Younget al. [12], and Cummer [13] have analyzed the stability
and numerical dispersion relations for second-order-accurate central differencing schemes
involving the Yee [14] staggered grid where the electric and magnetic field vectors are
interleaved. Using a different approach, Petropoulos [15] determined the grid resolution,
in terms of a fixed total computation time and desired phase error, for both second- and
fourth-order Yee schemes in two dimensions for free-space propagation.

In the past, staggered grids have usually been preferred over unstaggered grids for the
following reasons. On an unstaggered grid, the electric and magnetic field vectors are placed
on the same primary grid and all vector field components are colocated. Central differenc-
ing on an unstaggered grid can lead to undesirable numerical oscillations due to odd–even
decoupling [16]. Moreover, the standard unstaggered scheme produces a relative total nu-
merical phase velocity error four times greater than the staggered scheme due to the wider
stencil. Despite these problems, the unstaggered grid with its inherently colocated electric
field vector components offers several advantages specific to the modeling of optical wave
phenomena. For example, unstaggered schemes enable the use of a moving window coordi-
nate frame for tracking long-distance optical pulse propagation [17, 18]. Most importantly,
the use of a grid with colocated electric field vector components is essential for efficient and
accurate modeling of nonlinear optical wave propagation in two or three dimensions. The
reason for this is the fact that the presence of the nonlinearity requires calculating higher-
order powers of the electric field intensity at a given point in space at every time step. If
the electric field vector components are not colocated, as is the case with the staggered
Yee scheme, then the field intensity at a given point in space must be interpolated from the
known field components centered around that point. This interpolation is costly in terms of
computational efficiency and accuracy, and can be avoided altogether if the electric field
vectors are colocated.1

Liu [19] suggested an interesting way to combine the desirable properties of the staggered
and unstaggered grids. His approach uses noncentral differencing based on a combination

1 We note that the unstaggered grid is not the only option for colocating the electric field vector components.
For example, colocated staggered grids have been proposed where the electric and magnetic field vectors are
placed on dual grids but where all components of any given field vector are colocated [19]. We do not consider
those schemes here because they require about twice the number of operations [19]. Furthermore, a 1D version of
such a scheme does not exist.
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of forward and backward differencing (FD/BD) for the spatial derivatives on an unstaggered
grid. In this manner, the even–odd coupling is preserved even though the fields are colo-
cated; thus spurious oscillations are avoided. The methods referred to as NS2 and NS3 in
[19] (NS meaning “nonsymmetric”) are finite-difference (FD) discretizations of first-order
derivatives in Maxwell’s curl equations with third- and first-order accuracy, respectively. In
[19], numerical experiments supported the claim that the NS2 and NS3 schemes targeted
fourth- and sixth-order accuracy in space, respectively, as is the case for the corresponding
wave-equation systems containing second-order derivatives. However, as shown recently
by Driscoll and Fornberg [20], such noncentral differencing only retains the accuracy of
the first-order derivatives.

In this paper, we compare the Yee (staggered) and Liu NS2 (unstaggered) schemes for
modeling pulse propagation in linear and nonlinear dispersive media. Time integration is
performed for both grid configurations in the usual second-order leapfrog manner. Second-
and fourth-order spatial accuracy is considered on the staggered grids and third-order
spatial accuracy on the unstaggered grid. Therefore, we denote the various schemes as Y22,
Y24, and NS2. We do not include the NS3 method in this analysis as it is only first-order
accurate and therefore unable to capture the correct physics in the medium absorption band.

First, we compare the stability and accuracy of the Y22, Y24, and NS2 FDTD-ADE
schemes for alinear single-resonance Lorentz medium. We conduct a Von Neumann analy-
sis of each approach in order to determine stability criteria. Using CFL numbers below and
at the stability limit, we investigate phase and attenuation errors across the entire frequency
band of the Lorentz model. Second, we compare the results from the two grid arrangements
in modeling the transient evolution of few-cycle optical localized pulses in a Lorentz dis-
persive medium withnonlinearthird-order delayed response modeling Raman scattering.
Since the Courant limit for the nonlinear algorithm is not known, the nonlinear algorithms
were run below their linear CFL limit.

The focus of the numerical experiments is on the decay of linearly polarized fundamen-
tal and second-order bright soliton pulses due to the combined action third-order disper-
sion (TOD), self-phase modulation (SPM), self-steepening (SS), and Raman self-scattering
(RSS) [21]. These numerical experiments provide a rigorous test bed for comparing the
accuracy of the staggered and unstaggered FDTD-ADE schemes. Higher-order solitons
are nonlinear superpositions of single solitons with no binding energy. In the presence of
small perturbations, they decay and split into their single-soliton constituents. Their decay
has been investigated for a variety of cases, including the effects of TOD, SS, and SRS
[22, 23]. The dynamics of their decay is very rich due to nonlinear interactions among
the multiple single constitutive solitons. Striking examples include the breakup of higher-
order soliton pulses under the action of two-photon absorption (TPA) and the complicated
evolution of these solitons under periodic amplification. Higher-order solitons have re-
ceived less attention than fundamental solitons mainly because they are not as robust.
However, they exhibit important features like periodic beating [24] due to phase interfer-
ence among the constitutive solitons, and therefore offer potential applications in switching
devices.

2. THE NONLINEAR MAXWELL’S EQUATIONS

Maxwell’s equations describing the propagation of light in nonlinear dispersive envi-
ronments with no free charges are expressed in terms of (E, H) the electric and magnetic
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fields, respectively, and (D, B) the corresponding electric and magnetic flux densities,
as

∇ × E = − ∂
∂t

B,
(1)

∇ × H = ∂

∂t
D.

For nonmagnetic media the constitutive relations take the form

B = µ0H,
(2)

D = ε0PTOT,

whereµ0, ε0, are the free space permeability and permittivity. The total polarization

PTOT = P+ PNL (3)

is related to the electric field through the relations

P =
∫ t

−∞
χ(1)(t − t1)E(t1) dt1, (4)

PNL = E(t)
∫ t

−∞
χ(3)(t − t1)‖E(t1)‖2 dt1. (5)

Here, for simplicity, we have assumed [27] (i) axially symmetric and isotropic environments
so that the second-order susceptibility tensorχ(2) is identically zero, (ii)χ(1)=χ(1)yy =
χ(1)zz , (iii) χ(3)=χ(3)yyyy=χ(3)zzzz, and (iv) simplification of the third-order susceptibility into a
single nonlinear time convolution involving the field intensity. The susceptibilities can be
decomposed into their instantaneous background and residual parts

χ(1)(t) = ε∞δ(t)+ χ(1)R (t), (6)

χ(3)(t) = a(1− θ)δ(t)+ χ(3)R (t), (7)

whereε∞ is the infinite frequency permittivity,χ(1)R andχ(3)R are the residual susceptibilities,
a is the third-order coupling constant, andθ parameterizes the relative strength of the
instantaneous electronic Kerr and residual Raman molecular vibrational responses. This
decomposition yields

P = ε∞E+Φ, (8)

PNL = a(1− θ)‖E‖2E+ΦNL, (9)

whereΦ,ΦNL are the residual linear and nonlinear polarizations,

Φ(t) =
∫ t

−∞
χ
(1)
R (t − t1)E(t1) dt1 =

∫ ∞
0
χ
(1)
R (t1)E(t − t1) dt1,

(10)
ΦNL(t) = aθQE,
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Q =
∫ t

−∞
χ
(3)
R (t − t1)‖E(t1)‖2 dt1. (11)

Q describes the natural molecular vibrations within the dielectric material with frequency
many orders of magnitude less than the optical wave frequency, responding to the field
intensity. The total third-order nonlinear polarizationPNL reduces to the instantaneous
intensity-dependent Kerr response in the limitθ → 0.

In terms of the temporal Fourier transform

E(t) = 1

2π

∫ ∞
−∞

Ê(ω) exp(iωt) dω,

(12)

Ê(ω) =
∫ ∞
−∞

E(t) exp(−iωt) dt,

the residual kernel functionsχ(1)R , χ
(3)
R are modeled by single-resonance Lorentz dipole

oscillators (second-order filters):

χ̂
(1)
R (ω) = β1ω

2
1

ω2
1 + 2i γω − ω2

,

(13)

χ̂
(3)
R (ω) = Ä2

V

Ä2
V + 2i γVω − ω2

,

whereω1, γ , ÄV, γV, characterize the resonance frequency and bandwidth of the Lorentz
dipole oscillators modeling the medium linear and nonlinear residual response, respectively,
andβ1 is the difference between the zero (static) and infinite frequency relative permittivity,
β1 = εS−ε∞, which measures the strength of the field coupling to the linear Lorentz disper-
sion model. The limitβ1 → 0 corresponds to the limiting analytical linear dispersionless
case.

In the time domain, the kernel functions obey damped harmonic oscillator ordinary
differential equations (ODEs) of motion:

χ̈
(1)
R (t)+ 2γ χ̇ (1)R (t)+ ω2

1χ
(1)
R = 0,

(14)
χ̈
(3)
R + 2γV χ̇

(3)
R +Ä2

Vχ
(3)
R = 0.

For the initial conditionsχ(1)R (0)=χ(3)R (0)= 0, χ̇ (1)R (0)=ω2
p, χ̇

(3)
R (0)=Ä2

V, the solutions
take the form

χ
(1)
R (t) = ω2

p

ν0
exp(−γ t) sin(ν0t)2(t),

(15)

χ
(3)
R (t) = Ä2

V

νV
exp(−γV t) sin(νV t)2(t),

whereν0=
√
ω2

1 − γ 2, ω2
p=β1ω

2
1 is the plasma frequency, andνV =

√
Ä2

V − γ 2
V.

We further simplify Maxwell’s equations by considering isotropic and homogeneous
media, which permits a one-dimensional formulation of the electromagnetic field propaga-
tion problem. For electromagnetic plane waves propagating in thex direction, the vector
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Maxwell’s equations (1) are expressed as

∂

∂t
Hy = 1

µ0

∂

∂x
Ez,

∂

∂t
Hz = − 1

µ0

∂

∂x
Ey,

∂

∂t
Dy = − ∂

∂x
Hz, (16)

∂

∂t
Dz = ∂

∂x
Hy,

D = ε0
[
ε∞E+ a(1− θ)E

(
E2

y + E2
z

)+ΦTOT
]
,

whereΦTOT=Φ + ΦNL is the total residual polarization. Assuming linearly polarized
electromagnetic plane waves, the previous system reduces to

∂

∂t
H = 1

µ0

∂

∂x
E,

∂

∂t
D = ∂

∂x
H, (17)

D = ε0[ε∞E + a(1− θ)E3+8TOT],

whereH = Hy, E= Ez, D= Dz, and8TOT=8z+8NL
z .

Using Eq. (14), we can treat the memory integrals8, Q as new dependent variables
governed by driven damped Lorentz oscillator equations:

8̈+ 2γ 8̇+ ω2
18 = β1ω

2
1E, (18)

Q̈+ 2γVQ̇+Ä2
VQ = Ä2

V E2. (19)

Following the ADE method, Eqs. (18) and (19) are coupled simultaneously to Maxwell’s
curl equations (17). However, as shown by Petropoulos [11], these second-order ODEs
should be solved as a first-order system in accordance with Maxwell’s equations in order
to avoid instability due to incorrect time centering in the discrete form of the equations.
This can be accomplished by introducing the linear polarization currentJ and the nonlinear
conductivity termσ . The full nonlinear model equations then become

∂H

∂t
= c

∂E

∂x
,

∂D

∂t
= c

∂H

∂x
,

∂8

∂t
= J,

∂ J

∂t
= −2γ J − ω2

18+ β1ω
2
1E, (20)

∂Q
∂t
= σ,

∂σ

∂t
= −2γVσ −Ä2

VQ+Ä2
V E2,

D = ε∞E +8+ a(1− θ)θE3+ aθQ E.



COMPARISON OF FDTD GRIDS FOR OPTICAL SOLITON PROPAGATION 385

The model system (20) results from the dimensional Maxwell equations by scaling all fields
and the nonlinear coupling constant on a reference electric fieldE0 as

(H/E0)
√
µ0/ε0→ H, D/(ε0E0)→ D, 8/E0→ 8, J/E0→ J,

(21)
E/E0→ E, Q

/
E2

0 → Q, σ
/

E2
0 → σ aE2

0 → a,

where
√
µ0/ε0 is the free-space impedance. Subsequently scaling time (frequency) on

a reference time (inverse time) scalet0 (t
−1
0 ), and space (wave number) on a reference

distance (inverse distance) scalex0 (x
−1
0 ), results in dimensionless Maxwell’s equations. A

convenient choice that will be made here for the distance unit corresponds to the free-space
distancex0= ct0.

Before we describe the numerical schemes in more detail, it is useful to derive the
effective linear and nonlinear refractive indices and absorption coefficients. In the time
domain, Eqs. (17) are equivalently expressed in the form of a scaled wave equation:

ε∞
∂2

∂t2
E + a(1− θ) ∂

2

∂t2
E3− ∂2

∂x2
E + ∂2

∂t2
8TOT = 0. (22)

In Fourier space, the dimensionless electromagnetic fields can be expressed in terms of an
envelope and a carrier wave:

 E(x, t)

H(x, t)

D(x, t)

 = 1

2

q(x, t)

h(x, t)

d(x, t)

exp[i (k0x − ω0t)] + c.c. (23)

Assuming the rotating wave approximation, that is, neglecting the third-harmonic field,
the following wave equation for the slowly varying envelope (SVE)q̂(x, ω − ω0) can be
derived,

∂2

∂x2
q̂(x, ω − ω0)+ εTOT

r (ω) ω2 q̂(x, ω − ω0) = 0, (24)

where the relative dielectric function is given by

εTOT
r (ω) = εr + εNL

r ,

εr = ε∞ + χ̂ (1)R (ω), (25)

εNL
r = 3

4χ̂
(3)(ω − ω0)a|q|2,

with ε∞≡ 1+ χ̂ (1)∞ . The single-resonance Lorentz model is characterized by an absorp-
tion band lying approximately in the range [ω1, ω1

√
εS/ε∞]. The nonlinear dimensionless

dispersion relation takes the form

εTOT
r (ω) ω2 = k2. (26)

Its real and imaginary parts are related to the refractive indexn(ω) and the absorption loss
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coefficientα(ω) through the relationship

εTOT
r (ω) =

[
n(ω)+ i

α(ω)

2ω

]2

. (27)

Therefore,

n(ω) = n0(ω)+ n2|q|2,
(28)

α(ω) = α0(ω)+ α2(ω − ω0)|q|2,

where the linear and nonlinear induced refractive indices are given by

n0(ω) = Re
[√

ε∞ + χ̂ (1)R (ω)
]
,

(29)

n2 = 3aχ̂ (3)(0)

8n0(ω0)
= 3a

8n0
,

while the single- and two-photon dimensionless absorption coefficients are

α0(ω) = ω0

n0(ω0)
Im
[
χ̂
(1)
R (ω)

]
,

(30)

α2(ω − ω0) = aθω0

n0(ω0)
Im
[
χ̂
(3)
R (ω − ω0)

]
.

3. THE NUMERICAL SCHEMES

The Maxwell system (20) is discretized assuming two different spatial configurations:
a staggered Yee grid and an unstaggered Liu grid. We consider both second- and fourth-
order-accurate approximations to the spatial derivatives on the staggered Yee grids and
third-order spatial accuracy on the unstaggered grid. Time integration is performed with the
usual second-order leapfrog method where the electric and magnetic fields are staggered in
time by an interval1t/2. As discussed in the previous section, we solve the second-order
auxiliary differential equations as a sequence of first-order differential equations to obtain
correct time centering.

3.1. Yee Staggered Scheme

In the standard Yee grid, the electric and magnetic fields are staggered in space by half a
grid cell. The discretized version of the dimensionless Maxwell curl equations are given by

Hn+1/2
j+1/2 − Hn−1/2

j+1/2

1t
= A

(
En

j+1− En
j

)+ B
(
En

j+2− En
j−1

)
1x

Dn+1
j − Dn

j

1t
= A

(
Hn+1/2

j+1/2 − Hn+1/2
j−1/2

)+ B
(
Hn+1/2

j+3/2 − En+1/2
j−3/2

)
1x

,

(31)
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where (A= 1, B= 0) and (A= 9/8, B=−1/24) correspond respectively to the second-
and fourth-order spatially accurate Y22 and Y24 schemes. The discretized version of the
dimensionless auxiliary ODEs are given by

8n+1
j −8n

j

1t
= Jn+1

j + Jn
j

2

Jn+1
j − Jn

j

1t
= −2γ

Jn+1
j + Jn

j

2
− ω2

1

8n+1
j +8n

2
+ β1ω

2
1

En+1
j + En

j

2

Qn+1
j −Qn

j

1t
= σ n+1

j + σ n
j

2
(32)

σ n+1
j − σ n

j

1t
= −2γV

σ n+1
j + σ n

j

2
−Ä2

V

Qn+1
j +Qn

j

2
+Ä2

V

(
En+1

j + En
j

)2

4

Dn+1
j −8n+1

j = En+1
j

[
ε∞ + a(1− θ)(En+1

j

)2+ aθQn+1
j

]
.

3.2. Liu Unstaggered NS2 Scheme

In the unstaggered grid configuration, all field components of each field vector are colo-
cated. Furthermore, both the electric and magnetic field vectors are defined at the same
spatial points. Using FD/BD for the spatial derivatives yields the following discrete PDEs:

Hn+1/2
j − Hn−1/2

j

1t
= −

(
a−1En

j+1+ a0En
j

)+ (a−2En
j+2+ a1En

j−1

)
1x

Dn+1
j − Dn

j

1t
=
(
a−1Hn+1/2

j−1 + a0Hn+1/2
j

)+ (a−2Hn+1/2
j−2 + a1Hn+1/2

j+1

)
1x

.

(33)

The discrete auxiliary ODEs are the same as in Eq. (32). For the NS2 scheme,a−1=
−1, a0= 1/2, a−2= 1/6,a1= 1/3 [19].

In the next section, the stability and accuracy of the Y22, Y24, and NS2 schemes are
compared for electromagnetic propagation in alinear Lorentz dielectric. Therefore, we set
a= 0 in Eq. (20) and omit the nonlinear polarization field.

4. LINEAR STABILITY AND ACCURACY ANALYSIS

Neglecting boundary conditions, the Von Neumann stability analysis [28] assumes a space
harmonic variationeiknum j1x and complex time eigenvalueξn of all the field solutions of
the difference equations, i.e.,Xn

j = Xn eiknum j1x. Inserting this spatially harmonic form into
the difference equations yields a linear system of the formAXn+1=BXn, whereX is the
column vector containing all the amplitudesX andA, B are matrices involving1t , knum1x
and the medium parameters. The field growth per time step (time eigenvalues) can then be
determined by finding the roots of the characteristic polynomial ofA−1B. If any of these
eigenvalues are outside the unit circle for anyknum1x in the range 0≤ knum1x ≤ π , then
the scheme is unstable.
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The resulting characteristic polynomial is

ξ4

[
ε∞(1+ γ1t)+ ω

2
11t2

4
εS

]
+ ξ3

[
η

(
1+ γ1t + ω

2
11t2

4

)
− 2ε∞(2+ γ1t)

]
+ ξ2

[
η

(
−2+ ω

2
11t2

2

)
+ 6ε∞ − ω

2
11t2

2
εS

]
+ ξ
[
η

(
1− γ1t + ω

2
11t2

4

)
− 2ε∞(2− γ1t)

]
+
[
ε∞(1− γ1t)+ ω

2
11t2

4
εS

]
= 0, (34)

where for the staggered Yee and unstaggered Liu schemes respectively

ηY22 = 4ν2
Y22 sin2(knum1x/2),

ηY24 = 4ν2
Y24

[
9
8 sin(knum1x/2)− 1

24 sin(3knum1x/2)
]2
, (35)

ηNS2= ν2
NS2

[
25
18 + 1

9 cos(3knum1x)− 1
2 cos(2knum1x)− cos(knum1x)

]
,

andν=1t/1x are the CFL numbers. The characteristic polynomial (34) is fourth-order
in ξ because the second-order Lorentz ODE for the polarization was transformed to a first-
order system in accordance with Maxwell’s equations. Its four complex roots may be easily
obtained using a straightforward short Mathematica code. Since even and odd powers of
ξ are present in Eq. (34), the even–odd field coupling is preserved by all schemes. The
maximum CFL number for which|ξ | ≤ 1 can be calculated analytically by solving the
inequalitiesη ≤ 4ε∞, yielding

νY22 ≤ √ε∞,

νY24 ≤ 6
√
ε∞

7
, (36)

νNS2 ≤ 4
√
ε∞

3
.

Interestingly, all schemes have a stability criterion that depends only onε∞ and is indepen-
dent of all other medium parameters. Also, we note that the NS2 scheme has the largest
maximum stable CFL number. The maximum value ofνY22 corresponds to the magic time
step zeroing numerical dispersion when modeling dispersionless media.

The amount of artificial dissipation introduced by the discrete ODEs is shown in Fig. 1
as a function of the grid resolutionknum1x for a fixed normalized CFL numberν/νmax

equal to 1 and 0.7 (this last value lying slightly below the maximum CFL number 1/
√

2
for the Y22 scheme in 2D [1]). We consider the parameter valuesεS= 5.25,ε∞= 2.25 as
in [3] and a medium resonance-frequency resolutionω11t = 2π/60∼ 10−1. The case of a
low-loss Lorentz medium withγ /ω1= 0.01 is shown. The discretization-induced numerical
dissipation is very small for all schemes, with a peak value of∼5×10−4. We note that NS2
has a slightly narrower peak in both graphs.

Assuming a space-time harmonic variationei (ωt−kx) of all fields, the exact (physical)
dispersion relation associated with the linear part of Eq. (20) is readily obtained in dimen-
sionless form as

ε∞ω4+ 2i ε∞γω3− [k2+ εSω
2
1

]
ω2− 2i γ k2ω + k2ω2

1 = 0. (37)
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FIG. 1. Largest magnitude of the four complex roots of the characteristic polynomial (Eq. (34)) as a func-
tion of grid resolutionknum1x for a low-loss Lorentz medium withγ /ω1= 0.01, εS= 5.25, ε∞ = 2.25, and
ω11t = 2π/60∼ 10−1. The normalized CFL numberν/νmax is equal to 1 (top) and 0.7 (bottom).

For an arbitrary choice of characteristic space lengthx0, the dispersion relation has the same
form if we substitutek → k(ct0/x0) in Eq. (37). The solution of this physical dispersion
relation is readily obtained as

k = ω√ε∞
√

1− (β1/ε∞)ω2
1

ω2+ 2i γω − ω2
1

. (38)

Plots of the exact refractive index and attenuation constant are shown in Fig. 2 for a low-
loss Lorentz medium withγ /ω1= 0.01, εS= 5.25, andε∞= 2.25. The abrupt change in
the refractive index atω/ω1= 1 andω/ω1=

√
εS/ε∞ ∼ 1.527 defines the edges of the

Lorentz absorption band.
The numerical dispersion relation satisfied by the finite-difference approximations of the

linear model equations (neglecting boundary conditions) are found in the same way by
assuming anei (ωn1t−knum j1x) variation for the field quantities, withn and j enumerating the
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FIG. 2. Exact linear refractive index and attenuation coefficient of a Lorentz medium characterized by
γ /ω1= 0.01,εS= 5.25, andε∞ = 2.25.

time step and spatial grid point, respectively, yielding

ε∞ω̄4+ i ε∞γ̄ ω̄3−
[(

η

41t2

)
+ εS

ω̄2
1

4

]
ω̄2− i γ̄ ω̄

(
η

41t2

)
+
(

η

41t2

)
ω̄2

1

4
= 0, (39)

whereη is given by Eq. (35), ¯ω= sin(ω1t/2)/1t , and the numerical medium relaxation
and resonance frequencies are given by

γ̄ = γ cos(ω1t/2), (40)

ω̄1 = ω1 cos(ω1t/2). (41)

The numerical dispersion relation (39) can be rewritten in the form

√
η

21t
= ω̄√ε∞

√
1− (β1/ε∞)ω̄2

1/4

ω̄2+ i γ̄ ω̄ − ω̄2
1/4

, (42)

where
√
ηY24 andηNS2are cubic complex polynomials inknum1x whose analytical solutions

are known [16].
The numerical solution may then be compared with the exact physical one given by

Eq. (38) as a function of the frequency resolutionω1t for fixed normalized CFL number
ν/νmax≤ 1, γ /ω1 andω11t . Figure 3 shows plots of the following quantities: normalized
ratio between the numerical and the exact phase velocity (also given by the normalized ratio
between the exact and the numerical refractive index); normalized attenuation constant; nor-
malized energy velocity; and normalized group velocity. Parameter values areγ /ω1= 0.01,
ω11t = 2π/60,εS= 5.25, andε∞= 2.25. The normalized CFL number is set 30% below its
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FIG. 3. Normalized phase velocity, attenuation constant, energy velocity, and group velocity across the
passband and absorption band of the Lorentz medium (γ /ω1= 0.01,ω11t = 2π/60, εS= 5.25, ε∞ = 2.25). The
normalized CFL number is equal toν/νmax= 0.7.

maximum stability limit, i.e.,ν/νmax= 0.7. In Fig. 3, the data for each normalized quantity
have been graphed across four windows to provide the necessary graphical dynamic range
in each frequency regime. The windows illustrate frequency regimes below resonance, near
resonance, at the upper edge of the medium absorption band, and far above resonance where
the frequencies are coarsely resolved. Figure 3 illustrates the following salient features:
(1) All schemes have their highest normalized phase/dissipation errors at the coarsely re-
solved high frequency (approximately given byωc/ω1 ∼ 2/(ω11t) sin−1(ν/νmax) ∼ 14.8)
beyond which the fields decay exponentially and have an increasing phase velocity [25].
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(2) All schemes have the same error level at the upper edge of the medium absorption
band (atω/ω1=

√
εS/ε∞ ∼ 1.527). (3) In comparison to the Y22 scheme, the Y24 and

NS2 schemes have reduced phase/dissipation errors at frequencies near the linear reso-
nant frequency (ω/ω1∼ 1) and below (ω/ω1< 1). The energy transport velocity has been
calculated according to the formula given in [26],

vE/c =
[
n+ (εR− εS)(εR− ε∞)+ ε2

I

n(εS− ε∞)
]−1

, (43)

whereεR, εI are the real and imaginary parts of the relative complex dielectric function.
Since the energy velocity decreases in lossy frequency regions, the normalized ratio between
the numerical and exact energy velocities goes to zero for frequencies higher thanωc and
has upward peaks when the numerical extinction coefficient is lower than the exact one (i.e.,
at the upper edge of the medium absorption band). Finally, the group velocity, calculated
numerically from the exact and numerical dispersion relations, is shown to behave like the
normalized phase velocity in the passbands of the Lorentz model.

Further investigations of the Y22 schemes confirm that it exhibits the lowest phase error
at the maximum normalized CFL number, as expected. Further investigations of the Y24
and NS2 schemes reveal that decreasing the normalized CFL number from its maximum
value of unity results in a shift in the frequency range over which the maximum error occurs.
For normalized CFL numbers near unity, the maximum error occurs at the coarsely resolved
high frequencies at the upper end of the Lorentz spectrum. As the CFL number is decreased,
the frequency at which the maximum phase error occurs downshifts toward the upper edge
of the medium absorption band (ω/ω1=

√
εS/ε∞). This trend is illustrated in Fig. 3, where

for ν/νmax= 0.7, the phase error at the upper edge of the absorption band (ω/ω1 ' 1.527) is
nearly at the level of the error seen at the higher coarsely resolved frequencies. As the CFL
number is further decreased, the phase error becomes dominant at the medium resonant
frequency (ω/ω1= 1).

Finally, we show in Fig. 4 that the NS3 scheme is shown to be unable to capture the correct
physics in the medium absorption band. The two complex numerical solutionsu1, u2 lying
closest to the exact one are plotted near the medium resonant frequency, using the same
medium parameters as above. (knum1x is obtained by taking the complex arc cosine of those
solutions.) Results show that for fixed medium parameters, there is a critical normalized
CFL number below which the real parts ofu1, u2 coalesce, whereas their imaginary parts
present both up to two common discontinuities which move toward the upper edge of the
absorption band asν/νmax is further reduced. For this reason, and since this scheme is only
first-order [20], we have not included it in any of the other analyses or comparisons in this
paper.

In the next section, numerical experiments illustrate the use of the two grid arrangements
to study the transient evolution of few-cycle optical localized pulses in a Lorentz dispersive
unidimensional environment withnonlinearthird-order delayed response modeling Raman
scattering.

5. NUMERICAL EXPERIMENTS ON TEMPORAL SOLITONS

In this section, numerical simulations of the discrete nonlinear full model equations
(31)–(32), (33)–(32) are performed. We use the following normalized electric field source
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FIG. 4. The two complex numerical solutionsu1, u2 of the NS3 scheme lying closest to the exact one.
Parameter values areγ /ω1= 0.01,ω11t = 2π/60,εS= 5.25, andε∞ = 2.25.

condition at the left grid boundary,

E(x = 0, t) = f (t) cos(ω0t), (44)

where f (t)= N sech(t/t0), t0 (related to the full width at half-peak intensity bytFWHM '
1.76t0) is the characteristic time scale of the initial pulse envelope of normalized peak
amplitudeN, and N defines the number of solitons forming the multisoliton pulse [24].
The unstaggered grid arrangement requires the additional knowledge of the initialH values,
which can be approximately obtained taking into account the linear group velocity (GV)
and group velocity dispersion (GVD) of the pulse from the Fourier integral

H(x = 0, t) =
∫ ∞
−∞

Ĥ(ω)eiωt dω, (45)

where

Ĥ(ω) = 1

Z
Ê(ω), (46)

and the linear impedance defined as the ratio of the electric over magnetic Fourier mag-
nitudes is equal toZ=−ω/k. Performing a Taylor expansion ofk(ω) aroundω=ω0
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yields

H(x = 0, t) ' 1

2

[
1

Z0
f (t)− i

(
1

Z0

)′
f ′(t)− 1

2

(
1

Z0

)′′
f ′′(t)

]
eiω0t + c.c., (47)

where the impedance and its derivatives are all calculated atω=ω0.
In order to obtain solitonlike behavior from the balance of dispersion (GVD) and Kerr

nonlinearity (SPM), the initial normalized peak amplitudeN and pulse widtht0 of the
scaled electric field in Eq. (44) have to be properly adjusted according to the nonlinear
Schrödinger (NLS) equation. When the electromagnetic fields are assumed to be circularly
polarized, a standard reductive perturbation method (RPM) [29] within the slowly vary-
ing envelope approximation (SVEA) is used to reduce them to the NLS equation. This
asymptotic reduction is carried out in a coordinate system moving with the pulse in space
(spatial soliton) or in time (temporal soliton). Formally, this is done by introducing the
slowly varying variablesξ = ε(x − ω′0t), τ = ε2t , or equivalently the dual slow variables
ξ = ε2x, τ = ε(t−k′0x)which yields the one-dimensional NLS equation respectively in the
form

iqτ + 1

2

ξ2
0

TD
qξξ + 1

TNL
|q|2q = 0, (48)

iqξ + 1

2

τ 2
0

LD
qττ + 1

LNL
|q|2q = 0. (49)

ε is the small perturbation parameterε ∼ O(1ω/ω0)¿ 1 (quasi-monochromatic approx-
imation).

The characteristic dispersive and nonlinear length scales [21] are given by

TD = ξ2
0

ω′′0
, TNL = 2k0c2

acircω
2
0ω
′
0

= c

n2ω0ω
′
0
, (50)

LD = −τ
2
0

k′′0
= (ω′0τ0/ξ0)

2ω′0TD, LNL = ω′0TNL, (51)

where we used the fact that for circular polarization, Eq. (29) is replaced byacirc ' 2n0n2,
that is,a = (4/3)acirc. The balance between the dispersive and nonlinear length (time)
scales, written respectively as

TNL = TD, LNL = LD, (52)

provides the appropriate value for the nonlinear parametera to obtain solitonlike behavior.
Note that from the definition of the dual moving frames,ξ0=−ω′0τ0, this value is identical in
both moving coordinate systems. However, for the Maxwell’s equations we have chosen to
normalize space by the free-space velocityc, i.e.,ξ0= x0= ct0, and hence(ω′0t0/x0)

2 6= 1,
meaning that the value ofa obtained for the driving boundary conditions (Eqs. (44) and
(47)) that is used here will be different by a factor(ω′0/c)

2 from that obtained using initial
conditions given by specifying all fields (including the polarization) att = 0 like is done in
[17].
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FIG. 5. (a) Linear refractive index and (b) the nonlinear Raman gain and nonlinear index (dashed curve)
spectra. The pulse spectrum has been superimposed for comparison. Normalized linear Lorentz and Raman
parameters areγ /ω1= 10−6, ω1= 5.84,εS= 5.25,ε∞ = 2.25,θ = 0.3, γV/ÄV ' 0.356, andÄV = 1.28.

5.1. Decay of Higher-Order Temporal Solitons

The physical linear refractive index and the nonlinear Raman gain and nonlinear index
(dashed curve) spectra are shown in Fig. 5.

The source spectrum has been superimposed for comparison. The long relaxation time
(small dampingγ /ω1= 10−6) of the resonance causes two deep jumps of the linear refractive
index atω ∼ ω1 andω ∼ ω1

√
εS/ε∞, which outside this absorption band increases

slowly with frequency toward its infinite frequency value of
√
ε∞. The Lorentz medium

exhibits anomalous (normal) dispersionω′′ > 0 (ω′′< 0) over the spectral domain above
(below) the absorption band. We have chosen the same pulse parameters as in [3], i.e., an
initial hyperbolic secant bright soliton pulse of duration equal to 25.7 fs (FWHM) (time
constantt0= 14.6 fs,ct0= 4.38µm) centered atω0/2π = 137 THz (ω0t0= 12.57) (vacuum
wavelengthλ0= 2.19µm). Approximately 3.5 modulation cycles are contained within the
FWHM. The parameters defining the Raman Lorentz model are [30]ν−1

V = 12.2 fs, γ−1
V =

32 fs(νV t0∼ 1.2, γV t0∼ 0.456) (ÄV t0= 1.28). The largest gain occurs at a frequency shifted
upward by aboutÄV t0 corresponding to 13.2 THz, which is of the order of the initial soliton
spectral width(ÄV/ω0 ' 0.1).

Figures 6 and 7 display results of the simulations of transient fundamental (N= 1)
and second-order (N= 2) temporal soliton evolution, propagating in the nonlinear Raman
environment.
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FIG. 6. Transient fundamental (N= 1) temporal soliton propagation in the nonlinear Raman environment for
the same medium parameters as in Fig. 5.

The relative strength of the Kerr and Raman interactions is chosen equal toθ = 0.3. A
simple exact 1D one-way ABC was used. Alternative implementations of radiation boundary
conditions for high-order stencils using ghost nodes have been derived by Petropoulos [31]
and others. In order to globally preserve the accuracy of the schemes, these were closed
near the boundary using fifth- and fourth-order-accurate one-sided approximations as in
[32, 33]. All codes were run at half their linear CFL stability limit on a Sun Ultra 10
class workstation with run times below 30 min. in all cases tested using dynamic arrays to
minimize storage. All schemes are explicit and need only to call a standard Newton solver
for the cubic equation inEn+1.

The pulse central frequency was chosen atω0/ω1∼ 2.15 above the absorption band
(anomalous dispersion region). The approximate value ofa required by the Maxwell’s
solver to obtain solitonlike dynamics can be obtained from the NLS balance equation (52)
for the circular polarization with the choice of distance unitξ0= x0= ct0. For the driving
boundary condition Eqs. (44) and (47) and taking into account the Raman contribution, this
yieldsacirc(1− θ)= 3.78× 10−2. For the linear polarization,a= (4/3)acirc, which gives
for θ = 0.3 the valuea= 7× 10−2 found by Goorjian and Taflove. Attention must also be
paid to ensure sufficient spatial resolution due to the generation of third harmonics.

Several grid sizes have been used to explore the numerical stability and accuracy of
the nonlinear codes. A spatial resolution1x ∼ λ0/64 (λ0 being the carrier wavelength
inside the medium) is sufficient to mitigate the effects of numerical dispersion in the cases
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FIG. 7. Transient second-order (N= 2) temporal soliton propagation in the nonlinear Raman environment
for the same medium parameters as in Fig. 5.

treated. To characterize the solitonlike propagation regime, a useful parameter is given
by the product of the peak pulse intensity and the square of its FWHM. For fundamental
solitons, this measure of the “pulse area” is constant. Numerical results present excellent
agreement between the unstaggered and staggered nonlinear FDTD-ADE schemes. The
small (less than 1%) deviation in the soliton parameters (width and pulse area) obtained
with the unstaggered grid scheme can be attributed to the approximate source condition
needed for the magnetic field colocated with the electric field atx= 0. Figures 6a and
7a display the pulseE field at t = 380 fs andt = 871 fs corresponding to a propagation
distance equal tox= 55µm andx= 126µm, respectively. Also shown in Figs. 6b and
7b is the transient evolution of the pulse parameters. Figures 6c and 7c and 6d and 7d
depict the pulse fundamental and third-harmonic spectra. The asymptotic height of each
soliton resulting from the splitting of the initial second-order soliton (Fig. 7) into its com-
ponents is roughly 2λI/N= 3/2, 1/2, whereλI are the imaginary eigenvalues obtained
from the inverse scattering theory (IST) [24]. Phase velocity mismatch leads to the sep-
aration of the transient third-harmonic precursor generated by the initial condition from
the main pulse traveling at a different group velocity. As a result of the interference be-
tween this transient precursor and the stationary third-harmonic pulse continuously gen-
erated and traveling with the main pulse, the third-harmonic spectrum exhibits a symmet-
ric modulation and a continuous redshift due to the Raman self-scattering of the main
pulse.



398 GILLES, HAGNESS, AND VÁZQUEZ

6. CONCLUDING REMARKS

We have developed 1D vector Maxwell’s equations solvers based on the staggered grid
originally proposed by Yee and an unstaggered NS2 scheme proposed by Liu and shown
by Driscoll and Fornberg to be third-order-accurate to study the propagation of temporal
solitons in a single-resonance Lorentz medium with third-order Raman-like nonlinearity.
The stability and accuracy of the linear version of the various FDTD-ADE schemes have
been analyzed. We have found that all schemes have a stability criterion that depends only
on ε∞, and that the stability limit for the NS2 scheme is higher than that for the Y22 and
Y24 schemes. In comparison to the Y22 schemes, the numerical phase velocity errors for
the higher-order schemes are greatly reduced at frequencies below the Lorentz absorption
band and around the medium resonance frequency. The numerical dissipation levels do not
vary much between schemes, and overall are very small.

We have tested the staggered and unstaggered FDTD-ADE schemes on a relatively
complicated class of third-order nonlinear optical problems: the modeling of higher-order
solitonlike and third-harmonic dynamics. Numerical results using the unstaggered grid
scheme are in excellent agreement with the results obtained using the staggered grid
schemes. Use of colocated electric field schemes such as the NS2 unstaggered scheme
investigated here may prove to be essential for modeling nonlinear optical pulse propa-
gation in higher dimensions. For this application, the advantage of using an unstaggered
grid over an uncolocated staggered grid appears to outweigh any disadvantage of having
to use an approximate boundary condition for the unstaggered grid where the fields are
colocated.
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